TECHNOXAMM

Guide for way to Learn

Java Programming

PAGE 1

TECHNOXAMM

Guide for way to Learn

| _SNO _CONTENT __ ___________________________ PAGENO

Introduction to Java

1 2-6
2 Comments In Java 7-8
3 Variables And Data Types In Java 9-13
4 Operators in java 14
5 Strings and booleans operations in java 15-18
6 Arrays in java 19-22
7 Statements N Loops in java 23-30
8 Oops concept 3137
9 Java naming conventions 38
10 Objects and classes 39-41
1 Constructors in java 42-45
12 Java methods 46-52
13 Access modifiers 53-58
14 Overloading in java 59-61
15 Recursion in java 62-63
16 Inheritance in java 64-68
17 Encapsulation In java 69-70
18 Polymorphism 71-73
19 Abstraction in Java 74-78
20 Exception handling 79-88
PAGE 2

TECHNOXAMM

Guide for way to Learn

Introduction to Java

Java is a high-level, class-based, object-oriented programming
language that is designed to have as few implementation dependencies
as possible. It is a general-purpose programming language intended to
let application developers write once, run anywhere (WORA), meaning
that compiled Java code can run on all platforms that support Java
without the need for recompilation. Java applications are typically
compiled to bytecode that can run on any Java virtual machine (JVM)
regardless of the underlying computer architecture. The syntax of Java
is similar to C and C++, but has fewer low-level facilities than either of
them. The Java runtime provides dynamic capabilities (such as
reflection and runtime code modification) that are typically not available
in traditional compiled languages. As of 2019, Java was one of the most
popular programming languages in use according to GitHub, particularly
for client-server web applications, with a reported 9 million developers.

Java is a programming language developed by James Gosling and
others at Sun Microsystems. It's expressly designed for use in the
distributed environment of the internet. It was designed to have the “look
and feel” of C++ language, but it is simpler to use that C++.

PAGE 3

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Dependency_(computer_science)
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Application_developer
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Client%E2%80%93server
https://en.wikipedia.org/wiki/Web_application

TECHNOXAMM

Guide for way to Learn

History Of Java

The history of java starts from Green Team. Java team members (also
known as Green Team), initiated a revolutionary task to develop a
language for digital devices such as set-top boxes, televisions etc. For
the green team members, it was an advance concept at that time. But, it
was suited for internet programming. Later, Java technology as
incorporated by Netscape. Currently, Java is used in internet
programming, mobile devices, games, e-business solutions etc. There
are given the major points that describes the history of java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the
Java language project in June 1991. The small team of sun
engineers called Green Team.

2) Oiriginally designed for small, embedded systems in electronic
appliances like set- top boxes.

3) Firstly, it was called "Greentalk" by James Gosling and file extension
was .gt.

4) After that, it was called Oak and was developed as a part of the
Green project.

Complete History of Java

PAGE 4

TECHNOXAMM

Guide for way to Learn

Versions Of Java

The Java language has undergone several changes since JDK 1.0 as
well as numerous additions of classes and packages to the standard
library. Since J2SE 1.4, the evolution of the Java language has been
governed by the Java Community Process (JCP), which uses Java
Specification Requests (JSRs) to propose and specify additions and
changes to the Java platform. The language is specified by the Java
Language Specification (JLS); changes to the
JLS are managed under JSR 901. In addition
to the language changes, other changes
have been made to the Java Class Library ey
over the years, which has grown from a few R
hundred classes in JDK 1.0 to over three
thousand in J2SE 5. Entire new APls, such a [E it
as Swing and Java2D, have been introduced,

and many of the original JDK 1.0 classes and

methods have been deprecated. Some b oyl
programs allow conversion of Java programs

from one version of the Java platform to an .
older one (Regarding Oracle Java SE g e e
Support Roadmap, version 11 is the currently
supported long-term support (LTS) version,
together with Java 8 LTS, where Oracle
Customers will receive Oracle Premier
Support. Java 8 LTS last free software public
update for commercial use was released by
Oracle in January 2019, while Oracle continues to release no-cost public
Java 8 updates for development and personal use indefinitely. Java 10 a
previously supported rapid release version, had its support ended in
September 2018 the same date support for Java 11 began. Java 7 is no
longer publicly supported. For Java 11, long-term support will not be
provided by Oracle for the public; instead, the broader OpenJDK
community, as AdoptOpendDK or others, is expected to perform the
work. Java 16 General Availability occurred on March 16, 2021, with
Java 17 now also in development

History and versions of Java | Javatpoint

] (Sepd e 28, M11]

PAGE 5

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_Development_Kit
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Java_Community_Process
https://en.wikipedia.org/wiki/Java_platform
http://www.jcp.org/en/jsr/detail?id=901
https://en.wikipedia.org/wiki/Java_Class_Library
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Swing_(Java)
https://en.wikipedia.org/wiki/Java2D
https://en.wikipedia.org/wiki/Deprecation
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Long-term_support
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/OpenJDK
https://en.wikipedia.org/wiki/OpenJDK#OpenJDK_builds

TECHNOXAMM

Guide for way to Learn

Features Of Java

There is given many features of java. They are also known as java
buzzwords. The Java Features given below are simple and easy to

understand.
1. Simple
2. Object-Oriented
3. Portable
4. Platform independent
5. Secured
6. Robust
7. Architecture neutral
8. Dynamic
9. Interpreted
10. High Performance
11. Multithreaded -
12. Distributed Features

«
of =->Java Multitheeeded

—

PAGE 6

TECHNOXAMM

Guide for way to Learn

Java Comments

The java comments are statements that are not executed by the
compiler and interpreter. The comments can be used to provide
information or explanation about the variable, method, class or any
statement. It can also be used to hide program code for specific time.

There are 3 types of comments in java.

1. Single Line Comment
2. Multi Line Comment
3. Documentation Comment

Java Single Line Comment

The single line comment is used to comment only one line.
Syntax:

Example: //This is single line comment
public class CommentExample1 {
public static void main(String[] args) {
int i=10; //Here, i is a variable
System.out.printin(i);

1}

Output:

10

PAGE 7

TECHNOXAMM

Guide for way to Learn

Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.
Syntax:

Example: /* This is multi line comment */

public class CommentExample2 {

public static void main(String[] args) { /* Let's declare and print variable
in java. */

int i=10;
System.out.printin(i);
1}

Output:

10

Java Documentation Comment

The documentation comment is used to create documentation API. To
create documentation API, you need to use javadoc tool.

Syntax:
Example: /** This is documentation comment. */

/** The Calculator class provides methods to get addition and

subtraction of given 2 numbers.*/ public class Calculator {

PAGE 8

TECHNOXAMM

Guide for way to Learn

[** The add() method returns addition of given numbers.*/ public static
int add(int a, int b){return a+b;}

[** The sub() method returns subtraction of given numbers.*/ public

static int sub(int a, int b){return a-b;} }

Variables And Data Types In Java

Data types represent the different values to be stored in the variable. In
java, there are two types of data types:

o. Primitive data types
o. Non-primitive data types

Data Type
e

/ \\
/ T—
Primitive Non-Primitive
e o String
Boolean Numeric — ArTay
e —— etc.
- -
Character Iintegral
.’/ - ‘—\‘\‘
Integer Floating-point
-7 b
\
+ > T P \
boolean char byte short int long float double
PAGE 9

TECHNOXAMM

Guide for way to Learn

Data Type Default Value Default size

boolean False 1 bit

char "\u0000' 2 byte
byte 0 1 byte
short 0 2 byte
int 0 4 byte
long OL 8 byte
float 0.0f 4 byte
double 0.0d 8 byte

Java Variable Example: Add Two Numbers

class Simple{

public static void main(String[] args){
int a=10;

int b=10;

int c=a+Db;

System.out.printin(c);

1}
Output:20

Variables and Data Types in Java

Variable is a name of memory location. There are three types of
variables in java: local, instance and static.

There are two types of data types in java: primitive and non-primitive.

PAGE 10

TECHNOXAMM

Guide for way to Learn

Types of Variable

There are three types of variables in java:

* |local variable
* instance variable
» static variable

1)Local Variable
A variable which is declared inside the method is called local variable.
2) Instance Variable

A variable which is declared inside the class but outside the method, is
called instance variable . It is not declared as static.

3) Static variable

A variable that is declared as static is called static variable. It cannot be
local.

Example to understand the types of variables in java

class A{

int data=50;//instance variable
static int m=100;//static variable
void method(){

int n=90;//local variable

}

M/end of class

PAGE 11

TECHNOXAMM

Guide for way to Learn

Constants in Java

A constant is a variable which cannot have its value changed after
declaration. It uses the *final' keyword.

Syntax

modifier final dataType variableName = value; //global constant

modifier static final dataType variableName = value; //constant within a
C

Scope and Life Time of Variables

The scope of a variable defines the section of the code in which the
variable is visible. As a general rule, variables that are defined within a
block are not accessible outside that block. The lifetime of a variable
refers to how long the variable exists before it is destroyed. Destroying
variables refers to deallocating the memory that was allotted to the
variables when declaring it. We have written a few classes till now. You
might have observed that not all variables are the same. The ones
declared in the body of a method were different from those that were
declared in the class itself. There are three types of variables: instance
variables, formal parameters or local variables and local variables.

Instance variables

Instance variables are those that are defined within a class itself and not
in any method or constructor of the class. They are known as instance
variables because every instance of the class (object) contains a copy
of these variables. The scope of instance variables is determined by the
access specifier that is applied to these variables. We have already
seen about it earlier. The lifetime of these variables is the same as the
lifetime of the object to which it belongs. Object once created do not

exist for ever. They are destroyed by the garbage collector of Java when
PAGE 12

TECHNOXAMM

Guide for way to Learn

there are no more reference to that object. We shall see about Java's
automatic garbage collector later on.

Argument variables

These are the variables that are defined in the header oaf constructor or
a method. The scope of these variables is the method or constructor in
which they are defined. The lifetime is limited to the time for which the
method keeps executing. Once the method finishes execution, these
variables are destroyed.

Local variables

A local variable is the one that is declared within a method or a
constructor (not in the header). The scope and lifetime are limited to the
method itself.

One important distinction between these three types of variables is that
access specifiers can be applied to instance variables only and not to
argument or local variables.

In addition to the local variables defined in a method, we also have
variables that are defined in bocks life an if block and an else block. The
scope and is the same as that of the block itself.

PAGE 13

TECHNOXAMM

Guide for way to Learn

Operators In Java

Operator in java is a symbol that is used to perform operations. For
example: +, -, *, / etc. There are many types of operators in java which
are given below:

o. Unary Operator,

o. Arithmetic Operator,

o. shift Operator,

o. Relational Operator,

o. Bitwise Operator,

o. Logical Operator,

o. Ternary Operator and

o. Assignment Operator.

Operators Hierarchy

Opsralne Precadence

P recadeacs

mutiplcativg

admne

ik

relationad |\' > <= r= instancect

equalty

bitsize AND

|hl‘.‘.\ln sardanben OR | -

Il:i.‘.'.i» rcdud o OR
Ilu.i_.l AND

logh=al OR

temany

SR

. . “ ’
o

’ "

.

PAGE 14

TECHNOXAMM

Guide for way to Learn

Java Syntax

text file named HelloWorld. java

name
' ' ') main() method
public class| HellowWorld
{ !

public static void main(String[] args)

System.out.print("Hello, World“); |
} "

} statementis

Strings In Java

Strings are used for storing text. A string variable contains a
collection of characters surrounded by double quotes:
Create a variable of type string and assign it a value:
Syntax:

String greeting = “Hello";

String Length

A String in Java is actually an object, which contain methods
that can perform certain operations on strings. For example,
the length of a string can be found with the length() method:

Example:

String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.out.printin("The length of the txt string is: " +
txt.length());

PAGE 15

TECHNOXAMM

Guide for way to Learn

String Cases:
There are many string methods available, for example
toUpperCase() and toLowerCase():

Example:

String txt = "Hello World";
System.out.printin(txt.toUpperCase()); // Outputs "HELLO
WORLD"

System.out.printin(txt.toLowerCase()); // Outputs "hello
world”

Finding a Character in a String

The indexOf() method returns the index (the position) of the
first occurrence of a specified text in a string (including
whitespace):

Example:
String txt = "Please locate where 'locate' occurs!";
System.out.printin(txt.indexOf("locate")); // Outputs 7

String Concatenation
The + operator can be used between strings to combine
them. This is called concatenation:

Example:

String firstName = "John";
String lastName = "Doe";
System.out.printin(firstName +

+ lastName);

You can also use the concat() method to concatenate two
strings:

Example:

String firstName = "John ";

String lastName = "Doe";
System.out.printin(firstName.concat(lastName));

PAGE 16

TECHNOXAMM

Guide for way to Learn

Adding Numbers and Strings
If you add two numbers, the result will be a number:

Example:
int x =10;
inty = 20;

intz=x+y; //zwill be 30 (an integer/number)

Booleans In Java

In Java, the boolean keyword is a primitive data type. It is
used to store only two possible values, either true or false. It
specifies 1-bit of information and its "size" can't be defined
precisely.

The boolean keyword is used with variables and methods. Its
default value is false. It is generally associated with
conditional statements.

Simple boolean example

public class BooleanExample1 {
public static void main(String[] args) {
int num1=10;
int num2=20;
boolean b1=true;
boolean b2=false;
if(hum1<num?2)

{
}
else

{
}

System.out.printin(b1);

System.out.printin(b2);

} }
PAGE 17

TECHNOXAMM

Guide for way to Learn

Comparing the variables of boolean type

public class BooleanExample2 {

public static void main(String[] args) {
boolean b1=true;

boolean b2=false;

boolean b3=(b1==b2);
System.out.printin(b1);
System.out.printin(b2);
System.out.printin(b3);

}
}

Finding a prime number

public class BooleanExample5 {
public static void main(String[] args) {
int num=7;
boolean flag=false;
for(int i=2;i<num;i++)
{
if(num%i==0)
{
flag=true;
break;
}}
)

if(flag
{

System.out.printin("Not prime");

}

else

{

System.out.printin("prime");

1}

PAGE 18

TECHNOXAMM

Guide for way to Learn

Arrays In Java

Java provides a data structure, the array, which stores a
fixed-size sequential collection of elements of the same
type. An array is used to store a collection of data, but it is
often more useful to think of an array as a collection of
variables of the same type.

Instead of declaring individual variables, such as numberO,
number1, ..., and number99, you declare one array variable
such as numbers and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables.

Declaring Array Variables:

To use an array in a program, you must declare a variable to
reference the array, and you must specify the type of array
the variable can reference. Here is the syntax for declaring
an array variable:

dataType[] arrayRefVar; // preferred way.
or
dataType arrayRefVar(]; // works but not preferred way.

Note:The styledataType[] arrayRefVar is

preferred. The style dataType

arrayRefVar[] comes from the C/C++ language and was
adopted in Java to accommodate C/C++ programmers.

Example:
The following code snippets are examples of this syntax:

double[] myList;// preferred way.
or
double myList[];// works but not preferred way.

PAGE 19

TECHNOXAMM

Guide for way to Learn

Creating Arrays:
You can create an array by using the new operator with the

following syntax:
arrayRefVar = new dataType[arraySize];
The above statement does two things:

- It creates an array using new dataType[arraySize];

- It assigns the reference of the newly created array to
the variable arrayRefVar.

Declaring an array variable, creating an array, and
assigning the reference of the array to the variable can
be combined in one statement, as shown below:

dataType[] arrayRefVar = new dataType[arraySize];
Alternatively you can create arrays as follows:

dataType[] arrayRefVar = {valueO, value1, ..., valuek};

The array elements are accessed through the index. Array
indices are 0-based; that is, they start from 0O to
arrayRefVar.length-1.

Example:

Following statement declares an array variable,
myList, creates an array of 10 elements of double type
and assigns its reference to myList:

double[] myList = new double[10];

Following picture represents array SO e

myList. Here, myList holds , ...,.:..::,': 45

Arruy reforonee mylas LN

ten double values and the vasiele L3 [132
Indlces are from 0 to 9 Arngy loment - :::L::::: ":'x'x <t Elemcoat value

e ey Lisi|6) RxY))

mylisi|?) 4545

iy Lisi|3) 99,091

oy Lis1[Y] 12

PAGE 20

TECHNOXAMM

Guide for way to Learn

» To declare an array, define the variable type with square
brackets:

String[] cars;

» We have now declared a variable that holds an array of
strings. To insert values to it, we can use an array literal -
place the values in a comma-separated list, inside curly
braces:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
» To create an array of integers, you could write:
int[] myNum = {10, 20, 30, 40};

Processing Arrays:

When processing array elements, we often use either for
loop or for each loop because all of the elements in an

array are of the same type and the size of the array is
known.

Example:

Here is a complete example of showing how to create,
initialize and process arrays:

public class TestArray

{

public static void main(String[] args) {
double[] myList = {1.9, 2.9, 3.4, 3.5};
/[Print all the
array elements
for (inti=0;i<
myList.length; i+
+){
System.out.printin(myList[i] + " ");
}

//Summing all elements

PAGE 21

TECHNOXAMM

Guide for way to Learn

double total = 0;
for (inti = 0; i < myList.length; i++) {
total += myList][i];
}

System.out.printin("Total is " + total);

//Finding

the largest

element

double

max =

myList[0];

for (inti=1;i<
myList.length; i+
+) { if (myList[i] >
max) max =
myList[i];

}

System.out.printin("Max is " + max);

}
}

This would produce the following result:

1.9

2.9

3.4

3.5

Total is 11.7
Max is 3.5

PAGE 22

TECHNOXAMM

Guide for way to Learn

Loops In Java

In programming languages, loops are used to execute a set
of instructions/functions repeatedly when some conditions
become true.
There are three types of loops in Java.

o forloop

o while loop

o do-while loop

The Java for looo s used wilerzlc a
part of U pecgrarn several lemes., I
the number of itcration s s, it is
recommended to use for loop.

The Java while lvop & used 1o ilerale -
w uart of rw pregram severs| tines. If \ hl Ie
the numier of ilerationn is nol fed, itis

recornnended W use whike loo., | ole; P

Thie awes che-abinls laop s osest oaleszle
a parl ol Ue progran several Uines. Use L

il Lo vumbes ol slerzbon s nol Lxsd ad you
musl have W axccule e luog al leesl vice.

PAGE 23

TECHNOXAMM

Guide for way to Learn

Java For Loop vs While Loop vs Do While Loop

Cnmparhnn for loop while lnop dn while loap

Irxsduetsn Tha Jova “or loop 15 3 cortral flew staiemant Tre Java while 2op 12 & zamrol flew “he Jwa ¢2 while boep 19 3 cenmrel tlew

1Fas erates 2 part O the pecqQrams wotiple statement that exezutes a part of the | stater-emd that owpZutes a pat ¢ the

tmes, programs repwslec , on by base o mogra: oo lessl onoe snd e furlawr
give boakear comdit o, mucul o degsads upon thy given Loolkeon
=endin nn

'‘Wher to use H 1o mumber ¢f fterztior I9 7lQd. It B Mt cumbksr of Nerader 3 201 fixed, tis f the rumber of Terction Is 2ot xod and veu
recommenced 10 Jse for 120 recommended to ase while locp. st have 10 exgcuie the oop al least once,
b s recomimer dod 10 use the do-siwle lcc o,

Synlie
mac (v - iemmartiananesddans) ¢ wht e eemdiTiang | aq
YPoeade ca he avecnttad flemtm =A he azecrtsd Jieera ve e avarmead
wabiilelec docivi:
Esample X . -
ff2cr leccy fivailc loogp JJfdc wailc Zacp
ot r=icac=iDgr i | inT '=|; ‘mt =) ;
Rya~ap.cut.peintbin(1): why sl g=T0)(s
Sosbam . oot pziutlida; Sva.wiicub.poiobinfi)y;
ite; -t

whilz 1<=101

Symax fer
=a=f(;. wuhr sl mmeg | 4
Irnnetive (€00
Sleede v by waecuowd Jicode cu Ly wawuoled Flecce o v wawsuowd

ubiilelcoowr:

Java For Loop

The Java for loop is used to iterate a part of the program
several times. If the number of iteration is fixed, it is
recommended to use for loop. There are three types of for
loops in java.

o Simple For Loop

o For-each or Enhanced For Loop

o Labeled For Loop

PAGE 24

https://www.javatpoint.com/for-each-loop

TECHNOXAMM

Guide for way to Learn

Java Simple For Loop

A simple for loop is the same as C/C++. We can initialize
the variable, check condition and increment/decrement
value. It consists of four parts:

1. Initialization: It is the initial condition which is executed
once when the loop starts. Here, we can initialize the
variable, or we can use an already initialized variable. It
is an optional condition.

2. Condition: It is the second condition which is executed
each time to test the condition of the loop. It continues
execution until the condition is false. It must return
boolean value either true or false. It is an optional
condition.

3. Statement: The statement of the loop is executed each
time until the second condition is false.

4. Increment/Decrement: It increments or decrements
the variable value. It is an optional condition.

Syntax:

for(initialization;condition;incr/decr){
/Istatement or code to be executed

}

PAGE 25

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-variables

TECHNOXAMM

Guide for way to Learn

Flowchart
[|
L — |
==

Java Infinitive For Loop

If you use two semicolons ;; in the for loop, it will be infinitive
for loop.

Syntax:

for(;;{
/lcode to be executed

}

Example:

//[Java program to demonstrate the use of infinite for loop
//which prints an statement
public class ForExample {
public static void main(String[] args) {
//Using no condition in for loop
for(;;§

System.out.printin("infinitive loop");

I

PAGE 26

TECHNOXAMM

Guide for way to Learn

Java While Loop

The Java while loop is used to iterate a part of

the program several times. If the number of iteration is not
fixed, it is recommended to use while loop.

Syntax:

while(condition){
/lcode to be executed

}

FLOWCHART

cond ition

True l

- LR

PAGE 27

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/programs-list
https://www.javatpoint.com/java-for-loop

TECHNOXAMM

Guide for way to Learn

Java Infinitive While Loop

If you pass true in the while loop, it will be infinitive while
loop.

Syntax:

while(true {
/Icode to be executed

}

Example:

public class WhileExample2 {
public static void main(String[] args) {
while(true){
System.out.printin("infinitive while loop");
}

}
}

Java do-while Loop

The Java do-while loop is used to iterate a part of the
program several times. If the number of
iteration is not fixed and you must have to
execute the loop at least once, it is
recommended to use do-while loop.

The Java do-while loop is executed at
least once because condition is checked
after loop body.

Syntax:

do{
/Icode to be executed
while(condition);

PAGE 28

TECHNOXAMM

Guide for way to Learn

Example:

public class DoWhileExample {
public static void main(String[] args) {
int i=1;
do{
System.out.printin(i);
i++;
while(i<=10);
}
}

Java Break Statement

When a break statement is encountered inside a loop, the
loop is immediately terminated and the program control
resumes at the next statement following the loop.

The Java break statement is used to break loop

or switch statement. It breaks the current flow of the program
at specified condition. In case of inner loop, it breaks only
inner loop.

We can use Java break statement in all types of loops such
as for loop, while loop and do-while loop.

Syntax:

jump-statement;
break;

~false

Figure: Tlowchare of brcak statement

PAGE 29

https://www.javatpoint.com/java-switch
https://www.javatpoint.com/java-for-loop
https://www.javatpoint.com/java-while-loop
https://www.javatpoint.com/java-do-while-loop

TECHNOXAMM

Guide for way to Learn

Java Continue Statement

The continue statement is used in loop control structure
when you need to jump to the next iteration of the loop
immediately. It can be used with for loop or while loop.

The Java continue statement is used to continue the loop. It
continues the current flow of the program and skips the
remaining code at the specified condition. In case of an inner
loop, it continues the inner loop only.

We can use Java continue statement in all types of loops
such as for loop, while loop and do-while loop.

Syntax:

jump-statement;
continue;
Java Continue Statement Example

Example:

Il

Java Program to demonstrate the use of continue statement
//inside the for loop.

public class ContinueExample {

public static void main(String[] args) {

/[for loop
for(int i=1;i<=10;i++){
if(i==5){

//lusing continue statement
continue;//it will skip the rest statement
}
System.out.printin(i);
}
}
}

PAGE 30

TECHNOXAMM

Guide for way to Learn

Java Object Class

Java OOPs Concept

OOPs (Object-Oriented Programming) is a paradigm that
provides many concepts, such as inheritance, data
binding, polymorphism, etc.

Simula is considered the first object-oriented programming
language. The programming paradigm where everything is
represented as an object is known as a truly object-oriented
programming language.

Smalltalk is considered the first truly object-oriented
programming language. The popular object-oriented
languages are Java, C#, PHP, Python, C++, efc.

The main aim of object-oriented programming is to
implement real-world entities, for example, object, classes,
abstraction, inheritance, polymorphism, etc.

OOPs (Object-Oriented Programming System)

Abstractian
' Encapsulation

Aalymorphism : 1

.
Inhertance

Class

Qbject

PAGE 31

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/c-sharp-tutorial
https://www.javatpoint.com/php-tutorial
https://www.javatpoint.com/python-tutorial
https://www.javatpoint.com/cpp-tutorial

TECHNOXAMM

Guide for way to Learn

Object means a real-world entity such as a pen, chair, table,
computer, watch, etc. Object-Oriented Programming is a
methodology or paradigm to design a program using classes
and objects. It simplifies software development and
maintenance by providing some concepts:

O Object

O Class

O Inheritance

O Polymorphism
O Abstraction

O Encapsulation

Apart from these concepts, there are some other terms which
are used in Object-Oriented design:

o Coupling

o Cohesion

o Association
o Aggregation
o Composition

Object Pr. {)—'

Any entity that has state and behavior is|~.~ e / |,|
known as an object. For example, a chair, " N
pen, table, keyboard, bike, etc. It can be . m v
physical or logical. o P

PAGE 32

TECHNOXAMM

Guide for way to Learn

An Object can be defined as an instance of a class. An
object contains an address and takes up some space in
memory. Objects can communicate without knowing the
details of each other's data or code. The only necessary
thing is the type of message accepted and the type of
response returned by the objects. Example: A dog is an
object because it has states like color, name, breed, etc. as
well as behaviors like wagging the tail, barking, eating, etc.

Class

Collection of objects is called class. It is a logical entity. A class
can also be defined as a blueprint from which you can create an
individual object. Class doesn't consume any space.

Inheritance

When one object acquires all the properties and behaviors of
a parent object, it is known as inheritance. It provides code
reusability. It is used to achieve runtime polymorphism.

Polymorphism

If one task is performed in different ways, it is known as
polymorphism. For example: to convince the customer
differently, to draw something, for example, shape, triangle,
rectangle, etc.

In Java, we use method overloading and method overriding
to achieve polymorphism. Another example can be to speak
something; for example, a cat speaks meow, dog barks woof,
etc.

PAGE 33

TECHNOXAMM

Guide for way to Learn

Abstraction

Hiding internal details and showing functionality is known as
abstraction. For example phone call, we don't know the
internal processing.

Encapsulation

Binding (or wrapping) code and data together into a single
unit are known as encapsulation. For example, a capsule, it
is wrapped with different medicines.

A java class is the example of encapsulation. Java bean is
the fully encapsulated class because all the data members
are private here.

Coupling

Coupling refers to the knowledge or information or
dependency of another class. It arises when classes are
aware of each other. If a class has the details information of
another class, there is strong coupling. In Java, we use
private, protected, and public modifiers to display the visibility
level of a class, method, and field. You can use interfaces for
the weaker coupling because there is no concrete
implementation.

PAGE 34

TECHNOXAMM

Guide for way to Learn

Cohesion

Cohesion refers to the level of a component which performs
a single well-defined task. A single well-defined task is done
by a highly cohesive method. The weakly cohesive method
will split the task into separate parts. The java.io package is a
highly cohesive package because it has I/O related classes
and interface. However, the java.util package is a weakly
cohesive package because it has unrelated classes and
interfaces.

Association

Association represents the relationship between the objects.
Here, one object can be associated with one object or many
objects. There can be four types of association between the
objects:

o OnetoOne

o One to Many

o Many to One, and
o Many to Many

Let's understand the relationship with real-time examples.
For example, One country can have one prime minister (one
to one), and a prime minister can have many ministers (one
to many). Also, many MP's can have one prime minister
(many to one), and many ministers can have many
departments (many to many).

Association can be undirectional or bidirectional.

PAGE 35

TECHNOXAMM

Guide for way to Learn

Aggregation

Aggregation is a way to achieve Association. Aggregation
represents the relationship where one object contains other
objects as a part of its state. It represents the weak
relationship between objects. It is also termed as a has-
a relationship in Java. Like, inheritance represents the is-
a relationship. It is another way to reuse objects.

Composition

The composition is also a way to achieve Association. The
composition represents the relationship where one object
contains other objects as a part of its state. There is a strong
relationship between the containing object and the
dependent object. It is the state where containing objects do
not have an independent existence. If you delete the parent
object, all the child objects will be deleted automatically.

Advantage of OOPs over Procedure-oriented
programming language

1) OOPs makes development and maintenance easier,
whereas, in a procedure-oriented programming language, it
is not easy to manage if code grows as project size
increases.

2) OOPs provides data hiding, whereas, in a procedure-
oriented programming language, global data can be
accessed from anywhere.

3) OOPs provides the ability to simulate real-world event
much more effectively. We can provide the solution of real
word problem if we are using the Object-Oriented
Programming language.

PAGE 36

TECHNOXAMM

Guide for way to Learn

-
- —
-~
-~

= Glckal dats

——
-
-

-
-

~ -
-~
~ -

= Glckal dats

-
-
-
-

-
-

Figure: Data Representation in Procedure-Oriented
Programming

furi{)
\\‘\\\
Wwnii) /,,4 Object data ‘
’/"'
fur1()
~—~———_
fun?{) > Otject data
'/

-
-
-
-
-

Figure: Data Representation in Object-Oriented
Programming

PAGE 37

TECHNOXAMM

Guide for way to Learn

Java Naming conventions

Java naming convention is a rule to follow as you decide
what to name your identifiers such as class, package,
variable, constant, method, etc.

But, it is not forced to follow. So, it is known as convention
not rule. These conventions are suggested by several Java
communities such as Sun Microsystems and Netscape.

All the classes, interfaces, packages, methods and fields of
Java programming language are given according to the Java
naming convention. If you fail to follow these conventions, it
may generate confusion or erroneous code.

Advantage of naming conventions in java

By using standard Java naming conventions, you make your
code easier to read for yourself and other programmers.
Readability of Java program is very important. It indicates
that less time is spent to figure out what the code does.

The following are the key rules that must be followed by
every identifier:

o The name must not contain any white spaces.
o The name should not start with special characters like

& (ampersand), $ (dollar), _ (underscore).

PAGE 38

TECHNOXAMM

Guide for way to Learn

Objects and Classes in Java

An entity that has state and behavior is known as an object
e.g., chair, bike, marker, pen, table, car, etc. It can be
physical or logical (tangible and intangible). The example of

an intangible object is the banking system.
An object has three characteristics:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an
object such as deposit, withdraw, etc.

o ldentity: An object identity is typically implemented via
a unique ID. The value of the ID is not visible to the
external user. However, it is used internally by the JVM

to identify each object uniquely.

Characteristics of Object

state

Mipteseals e date
o an obiest.

3ahavior
reyresen’s [hy dedavier of an
ab ect such as deposit,
withdriw et
Identity
It |5 USRS laternal y dy tre JvM
Lo idemily so2h object unicuely

PAGE 39

TECHNOXAMM

Guide for way to Learn

A class is a group of objects which have common properties.
It is a template or blueprint from which objects are created. It
is a logical entity. It can't be physical.

A class in Java can contain:
* Fields

Methods

Constructors

Blocks

Nested class and interface

Syntax to declare a class:

class <class_name>{
field;
method;

}

3 Ways to initialize object

There are 3 ways to initialize object in Java.
» By reference variable

* By method

» By constructor

1) Object and Class Example: Initialization through
reference

Initializing an object means storing data into the object. Let's

see a simple example where we are going to initialize the

object through a reference variable.

class Student{
int id;
String name;

}
class TestStudent2{

public static void main(String args[]){

PAGE 40

TECHNOXAMM

Guide for way to Learn

Student s1=new Student();
s1.id=101;
s1.name="Sonoo";
System.out.printin(s1.id+" "+s1.name);//
printing members with a white space

}
}

2) Object and Class Example: Initialization through method
In this example, we are creating the two objects of Student
class and initializing the value to these objects by invoking
the insertRecord method. Here, we are displaying the state
(data) of the objects by invoking the displaylnformation()
method.

class Student{

int rollno;

String name;

void insertRecord(int r, String n){
rollno=r;
name=n;

}

void displaylnformation()

{System.out.printin(rollno+

}

class TestStudent4{

public static void main(String args[]{
Student s1=new Student();
Student s2=new Student();
s1.insertRecord(111,"Karan");
s2.insertRecord(222,"Aryan");
s1.displaylnformation();
s2.displaylnformation();

}

3) Object and Class Example: Initialization through a
constructor

+name);}

PAGE 41

TECHNOXAMM

Guide for way to Learn

Constructors In Java

Constructor in java is a special type of method that is

used to initialize the object. Java constructor is invoked at

the time of object creation. It constructs the values i.e.

provides data for the object that is why it is known as

constructor.

There are basically two rules defined for the constructor.
1. Constructor name must be same as its class name
2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:
1. Default constructor (no-arg constructor)
2. Parameterized constructor

Java Default Constructor

A constructor that have no parameter is known as
default constructor.

Syntax of default constructor:
<class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor
in the Bike class. It will be invoked at the time of object
creation.

class Bike1{

Bike1(){System.out.printin("Bike is created");}

public static void main(String args[]){

Bike1 b=new Bike1();

1}
Output: Bike is created

PAGE 42

TECHNOXAMM

Guide for way to Learn

Example of parameterized constructor

In this example, we have created the constructor of
Student class that have two parameters. We can have
any number of parameters in the constructor.

class Student4{

int id;

String name;
Student4(int i,String n)}{
id =1;

name = n;

}

void display()}{System.out.printin(id+" "+name);}

public static void main(String args[]X
Student4 s1 = new Student4(111,"Karan");
Student4 s2 = new Student4(222,"Aryan");
s1.display();

s2.display();

)
Output:

111.Karan
222.Aryan

Constructor Overloading in Java

Constructor overloading is a technique in Java in
which a class can have any number of constructors
that differ in parameter lists. The compiler
differentiates these constructors by taking into
account the number of parameters in the list and their

type.

PAGE 43

TECHNOXAMM

Guide for way to Learn

Example of Constructor Overloading
class Student5{
int id;
String name;
int age;
Student5(int i,String n){
id =1;
name = n;
}
Student5(int i,String n,int a){
id =1i;
name = n;
age=a;
}
void display()}{System.out.printin(id+

+name+" "+age);}

public static void main(String args[]){
Student5 s1 = new Student5(111,"Karan");
Student5 s2 = new Student5(222,"Aryan",25);
s1.display();

s2.display();
1}

Output:

111 Karan O
222 Aryan 25

Java Copy Constructor

There is no copy constructor in java. But, we can copy
the values of one object to another like copy constructor
in C++.

PAGE 44

TECHNOXAMM

Guide for way to Learn

There are many ways to copy the values of one object
into another in java. They are:

o By constructor

o By assigning the values of one object into another
o By clone() method Obiject class

Example

In this example, we are going to copy the values
of one object into another using java constructor.

class Student6{

int id;

String name;
Student6(int i,String n){
id =1i;

name = n;

}

Student6(Student6 s){
id = s.id;

name =s.name;

}

void display(){System.out.printin(id+" "+name);}

public static void main(String args[]){
Student6 s1 = new Student6(111,"Karan");
Student6 s2 = new Student6(s1);
s1.display();

s2.display();

)
Output:

111.Karan
111.Karan

PAGE 45

TECHNOXAMM

Guide for way to Learn

Java - Methods

A Java method is a collection of statements that are
grouped together to perform an operation. When you call
the System.out.printin() method, for example, the system
actually executes several statements in order to display a
message on the console.

Now you will learn how to create your own methods with
or without return values, invoke a method with or without
parameters, and apply method abstraction in the
program design.

Creating Method

Considering the following example to explain the syntax of a
method -

Syntax

public static int methodName(int a, int b) {
// body

}

Here,

* public static — modifier

* int — return type

- methodName - name of the method
« a, b — formal parameters

* inta, int b — list of parameters

PAGE 46

TECHNOXAMM

Guide for way to Learn

Method definition consists of a method header and a
method body. The same is shown in the following syntax

Syntax

modifier returnType
nameOfMethod (Parameter
List) { // method body

}

The syntax shown above includes -

- modifier — It defines the access type of the method and
it is optional to use.

* returnType — Method may return a value.

« nameOfMethod — This is the method name. The
method signature consists of the method name and the
parameter list.

» Parameter List — The list of parameters, it is the
type, order, and number of parameters of a
method. These are optional, method may contain
zero parameters.

+ method body — The method body defines what the
method does with the statements.

PAGE 47

TECHNOXAMM

Guide for way to Learn

Call by Value and Call by Reference in Java
There is only call by value in java, not call by reference.
If we call a method passing a value, it is known as call
by value. The changes being done in the called method,
is not affected in the calling method.

Example of call by value in java
In case of call by value original value is not changed.
Let's take a simple example:
class Operation{
int data=50;
void change(int data){
data=data+100;//changes will be in the local variable only

}

public static void main(String args[]){
Operation op=new Operation();
System.out.printin("before change "+op.data);
op.change(500);
System.out.printin("after change "+op.data);

}

}
Output:before change 50

after change 50

In Java, parameters are always passed by value.
For example, following program prints i = 10, j =
20.
/I Test.java class Test {

// swap() doesn't swap i and |

public static void swap(Integer i, Integer j) {

Integer temp = new Integer(i);
PAGE 48

TECHNOXAMM

Guide for way to Learn

j = temp;

}

public static void main(String[] args) {
Integer i = new Integer(10);
Integer j = new Integer(20);
swap(i, J);
System.out.printin("i="+i+",j="+]j);

Static Fields and Methods

The static keyword in java is used for memory
management mainly. We can apply java static keyword
with variables, methods, blocks and nested class. The
static keyword belongs to the class than instance of the
class.

The static can be:

1. variable (also known as class variable)
2. method (also known as class method)
3. block

4. nested class

Java static variable

If you declare any variable as static, it is known static
variable.

o. The static variable can be used to refer the
common property of all objects (that is not unique

PAGE 49

TECHNOXAMM

Guide for way to Learn

for each object) e.g. company name of
employees,college name of students etc.

o. The static variable gets memory only once in class
area at the time of class loading.

Advantage of static variable

It makes your program memory efficient (i.e it saves
memory).

Understanding problem without static variable

class Student{

int rollno;

String name;

String college="ITS";
}

Example of static variable
/[Program of static variable
class Student8{

int rollno;
String name;

static String college ="ITS",
Student8(int r,String n){
rollno =r;

name = n;

}

void display (}{System.out.printin(rollno+" "+name+"
"t+college);}
public static void main(String args[]){
PAGE 50

TECHNOXAMM

Guide for way to Learn

Student8 s1 = new Student8(111,"Karan");
Student8 s2 = new Student8(222,"Aryan");

s1.display();
s2.display();

1}

Output:
111
Karan
ITS

222
Aryan
ITS

Java static method

If you apply static keyword with any method, it is known as
static method.

o. A static method belongs to the class rather than
object of a class.

o. A static method can be invoked without the need for
creating an instance of a class.

o. static method can access static data member and
can change the value of it.
Example of static method
/[Program of changing the common property of all
objects(static field).

class Student9{
int rollno;
String name;
static String college = "ITS";

PAGE 51

TECHNOXAMM

Guide for way to Learn

static void change(){
college = "BBDIT";

}

Student9(int r, String n)¥{
rollno =r;

name = n;

}

void display ()
{System.out.printin(rollno+"

"+name+" "+college);} public static
void main(String args[])
{ Student9.change();
Student9 s1 = new Student9 (111,"Karan");
Student9 s2 = new Student9 (222,"Aryan");
Student9 s3 = new Student9 (333,"Sonoo");
s1.display();
s2.display();
s3.display();
1}
Output:111 Karan BBDIT
222 Aryan BBDIT

333 Sonoo BBDIT

Java static block

o. Is used to initialize the static data member.

o. It is executed before main method at the time of class
loading.

PAGE 52

TECHNOXAMM

Guide for way to Learn

Example of static block
class A2{

static{System.out.printin("
static block is invoked");}
public static void
main(String args|[])

{ System.out.printin("Hell
o main"); } }

Output: static block is invoked
Hello main

Access Control

Access Modifiers in java

There are two types of modifiers in java:
access modifiers and non-access modifiers.

The access modifiers in java specifies accessibility
(scope) of a data member, method, constructor or class.

There are 4 types of java access modifiers
1. private

2. default
3. protected
4. public

PAGE 53

TECHNOXAMM

Guide for way to Learn

private access modifier
The private access modifier is accessible only within
class.

Simple example of private access modifier

In this example, we have created two classes A and
Simple. A class contains private data member and
private method. We are accessing these private
members from outside the class, so there is compile
time error.

class A{

private int data=40;

private void msg()

{System.out.printin(“Hello

java’);}

}

public class Simple{

public static void main(String args[]){
A obj=new A();
System.out.printin(obj.data);//Compile Time Error
obj.msg();//Compile Time Error

}
}

PAGE 54

TECHNOXAMM

Guide for way to Learn

Default access modifier

If you don't use any modifier, it is treated as default
bydefault. The default modifier is accessible only within
package.

Example of default access modifier

In this example, we have created two packages pack
and mypack. We are accessing the A class from outside
its package, since A class is not public, so it cannot be
accessed from outside the package.

/[save by A.java
package pack;
class A{
void msg(){System.out.printin("Hello");}

}

/[save by B.java
package mypack;

import pack.”;
class B{

public static void main(String args[]){
A obj = new A();//Compile Time Error
obj.msg();//Compile Time Error } }

PAGE 55

TECHNOXAMM

Guide for way to Learn

In the above example, the scope of class A
and its method msg() is default so it cannot be
accessed from outside the package.

protected access modifier

The protected access modifier is accessible within
package and outside the package but through inheritance
only.

The protected access modifier can be applied on the data
member, method and constructor. It can't be applied on
the class.

Example of protected access modifier

In this example, we have created the two packages pack
and mypack. The A class of pack package is public, so
can be accessed from outside the package. But msg
method of this package is declared as protected, so it can
be accessed from outside the class only through
inheritance.
//[save by A.java
package pack;
public class A{
protected void msg()
{System.out.printin("Hello"
);} } //save by B.java

package mypack;

import pack.”;

PAGE 56

TECHNOXAMM

Guide for way to Learn

class B extends A{
public static void main(String args[]){
B obj = new B();

obj.msg();} }
Output:Hello

public access modifier

The public access modifier is accessible everywhere.
It has the widest scope among all other modifiers.

Example of public access modifier
//save by A.java
package pack;
public class A{
public void msg()
{System.out.printin("Hello
");} } //save by B.java
package mypack;
import pack.*;
class B{
public static void main(String args[]){
A obj = new A();
obj.msg();

1}
Output:Hello

PAGE 57

TECHNOXAMM

Guide for way to Learn

Understanding all java access modifiers
Let's understand the access modifiers by a simple table.

outside package

Access within within by outside

Modifier class package subclass only package
Private Y N N N
Default Y Y N N
Protected Y Y Y N
Public Y Y Y Y

this keyword in java

Usage of java this keyword
Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance
variable.

2. this can be used to invoke current class method
(implicitly)

3. this() can be used to invoke current class constructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor
call.

6. this can be used to return the current class instance
from the method.

PAGE 58

TECHNOXAMM

Guide for way to Learn

Example:

class Student{ int rollno; String name; float fee;

Student(int rollno,String name,float fee){ this.rollno=rollno;

this.name=name; this.fee=fee;

}

void display(){

System.out.printin(rolino+

}

class TestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f); Student s2=new
Student(112,"sumit",6000f); s1.display();

s2.display();

1

Output:
111 ankit 5000

112 sumit 6000

+name+" "+fee);}

Difference between constructor and method in java

Constructor Overloading in Java

Constructor overloading is a technique in Java in which a
class can have any number of constructors that differ in
parameter lists.The compiler differentiates these constructors
by taking into account the number of parameters in the list
and their type.

PAGE 59

TECHNOXAMM

Guide for way to Learn

Example of Constructor Overloading
class Studentb{

int id; String

name; int

age;

Student5(int i,String n){
id =1i;

name = n;

}

Student5(int i,String n,int a)}{
id =1i;

name = n;

age=a;

}

void display(){System.out.printin(id+" "+name+" "+age);}

public static void main(String args[]){
Student5 s1 = new Student5(111,"Karan");
Student5 s2 = new Student5(222,"Aryan",25);
s1.display();

s2.display();

}

}

Output:
111 Karan O

222 Aryan 25

PAGE 60

TECHNOXAMM

Guide for way to Learn

Method Overloading in java

If a class has multiple methods having same name but
different in parameters, it is known as Method Overloading.

If we have to perform only one operation, having same name
of the methods increases the readability of the program.

Method Overloading: changing no. of arguments

In this example, we have created two methods, first add()
method performs addition of two numbers and second add
method performs addition of three numbers.

Example

In this example, we are creating static methods so that we
don't need to create instance for calling methods.

class Adder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}
}

class TestOverloading1{

public static void main(String[] args){
System.out.printin(Adder.add(11,11));
System.out.printin(Adder.add(11,11,11));

1}
Output:

22

33
PAGE 61

TECHNOXAMM

Guide for way to Learn

Recursion in Java

Recursion in java is a process in which a method calls itself
continuously. A method in java that calls itself is called
recursive method.

Java Recursion Example 1: Factorial Number

public class RecursionExample3 {

static int factorial(int n){

if (n==1)

return 1;

else

return(n * factorial(n-1));

1}

public static void main(String[] args)

{ System.out.printin("Factorial of 5 is: "+factorial(5)); } }

Output:

Factorial of 5 is: 120

Java Garbage Collection

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime
unused memory automatically. In other words, it is a way to
destroy the unused objects.

PAGE 62

TECHNOXAMM

Guide for way to Learn

To do so, we were using free() function in C language and
delete() in C++. But, in java it is performed automatically. So,
java provides better memory management.

Advantage of Garbage Collection

o. It makes java memory efficient because garbage
collector removes the unreferenced objects from heap
memory.

o. It is automatically done by the garbage collector(a part of
JVM) so we don't need to make extra efforts.

gc() method
The gc() method is used to invoke the garbage collector to

perform cleanup processing. The gc() is found in
System and Runtime classes.

public static void gc(){}

Simple Example of garbage collection in java
public class TestGarbage1{

public void finalize(){System.out.printin("object is garbage
collected");} public static void main(String args|[])
{ TestGarbage1 s1=new TestGarbage1();
TestGarbage1 s2=new TestGarbage1();

s1=null;

s2=null;

System.gc();

1}

object is garbage collected

object is garbage collected
PAGE 63

TECHNOXAMM

Guide for way to Learn

Inheritance In Java

Inheritance in Java is a mechanism in which one object
acquires all the properties and behaviors of a parent object.
It is an important part of OOPs (Object Oriented
programming system). The idea behind inheritance in Java is
that you can create new classes that are built upon existing
classes. When you inherit from an existing class, you can
reuse methods and fields of the parent class. Moreover, you
can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also
known as a parent-child relationship.

Why use inheritance in java????

o For Method Overriding (so runtime polymorphism can
be achieved).
o For Code Reusability.

Terms used in Inheritance

o Class: A class is a group of objects which have
common properties. It is a template or blueprint from
which objects are created.

o Sub Class/Child Class: Subclass is a class which
inherits the other class. It is also called a derived class,

extended class, or child class.

PAGE 64

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

TECHNOXAMM

Guide for way to Learn

o Super Class/Parent Class: Superclass is the class
from where a subclass inherits the features. It is also
called a base class or a parent class.

o Reusability: As the name specifies, reusability is a
mechanism which facilitates you to reuse the fields and
methods of the existing class when you create a new
class. You can use the same fields and methods

already defined in the previous class.

The syntax of Java Inheritance

class Subclass-name extends Superclass-name

{
//methods and fields

}

The extends keyword indicates that you are making a new
class that derives from an existing class. The meaning of
"extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called
a parent or superclass, and the new class is called child or
subclass.

PAGE 65

TECHNOXAMM

Guide for way to Learn

Java Inheritance Example . ™
Employee
salary: float]

As displayed in the figure, Programmer is the |)

subclass and Employee is the superclass. The il_\

relationship between the two classes - ~

is Programmer IS-A Employee. It means that DB

Programmer is a type of Employee. bonus: int

L 7,

class Employee{

float salary=40000;

}

class Programmer extends Employee{

int bonus=10000;

public static void main(String argsl[]){
Programmer p=new Programmer();
System.out.printin("Programmer salary is:"+p.salary);
System.out.printin("Bonus of Programmer is:"+p.bonus);

}
}

Output:
Programmer salary is:40000.0
Bonus of programmer is:10000

Types of inheritance in java

On the basis of class, there can be three types of inheritance
in java: single, multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is
supported through interface only.

PAGE 66

TECHNOXAMM

Guide for way to Learn

Single Inheritance

When a class inherits another class, it is known as a single
inheritance.

In the example given below, Dog class inherits the Animal
class, so there is the single inheritance.

class Animal{

void eat(){System.out.printin("eating...");}

}

class Dog extends Animal{

void bark(){System.out.printin("barking...");}

}

class Testlnheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

1}

Output:

barking...

eating...

Multilevel Inheritance

When there is a chain of inheritance, it is known as multilevel
inheritance.

In the example given below, BabyDog class inherits the Dog
class which again inherits the Animal class, so there is a
multilevel inheritance.

class Animal{
void eat(){System.out.printin("eating...");}

}

class Dog extends Animal{
void bark(){System.out.printin("barking...");}

}

PAGE 67

TECHNOXAMM

Guide for way to Learn

class BabyDog extends Dog{

void weep(){System.out.printin("weeping...");}
}

class Testlnheritance2{

public static void main(String args[]){
BabyDog d=new BabyDog();
d.weep();

d.bark();

d.eat(); }}

Output:

weeping...

barking...

eating...

Hierarchical Inheritance

When two or more classes inherits a single class, it is known
as hierarchical inheritance.

In the example given below, Dog and Cat classes inherits the
Animal class, so there is hierarchical inheritance.
class Animal{

void eat(){System.out.printin("eating...");}

}

class Dog extends Animal{

void bark(){System.out.printin("barking...");}

}

class Cat extends Animal{

void meow(){System.out.printin("meowing...");} }
class Testlnheritance3{

public static void main(String args[]{

Cat c=new Cat();

c.meow();

c.eat();

/lc.bark();//C.T.Error

1

Output:

meowing...

eating...

PAGE 68

TECHNOXAMM

Guide for way to Learn

Encapsulation in Java

Encapsulation in Java is a process of wrapping code and
data together into a single unit, for example, a capsule which
is mixed of several medicines. We can create a fully
encapsulated class in Java by making all the data members
of the class private. Now we can use setter and getter
methods to set and get the data in it.

The Java Bean class is the example of a fully encapsulated
class.

Advantage of Encapsulation in Java

By providing only a setter or getter method, you can make
the class read-only or write-only. In other words, you can skip
the getter or setter methods. It provides you the control over
the data. Suppose you want to set the value of id which
should be greater than 100 only, you can write the logic
inside the setter method. You can write the logic not to store
the negative numbers in the setter methods. It is a way to
achieve data hiding in Java because other class will not be
able to access the data through the private data
members.The encapsulate class is easy to test. So, it is
better for unit testing. The standard IDE's are providing the
facility to generate the getters and setters. So, it is easy and
fast to create an encapsulated class in Java.

PAGE 69

TECHNOXAMM

Guide for way to Learn

Simple Example of Encapsulation in Java

Let's see the simple example of encapsulation that has only
one field with its setter and getter methods.

//A Java class which is a fully encapsulated class.
/l
It has a private data member and getter and setter methods.

package com.javatpoint;
public class Student{
/lprivate data member
private String name;
//getter method for name
public String getName(){
return name,

}

//setter method for name
public void setName(String name){
this.name=name

}
}

//A Java class to test the encapsulated class.
package com.javatpoint;

class Test{

public static void main(String[] args){
/[creating instance of the encapsulated class
Student s=new Student();

//setting value in the name member
s.setName("vijay");

//getting value of the name member
System.out.printin(s.getName());

}
}

Output:
vijay

PAGE 70

TECHNOXAMM

Guide for way to Learn

Polymorphism in Java

Polymorphism in Java is a concept by which we can perform
a single action in different ways. Polymorphism is derived
from 2 Greek words: poly and morphs. The word "poly"
means many and "morphs" means forms. So polymorphism
means many forms.

There are two types of polymorphism in Java: compile-time
polymorphism and runtime polymorphism. We can perform
polymorphism in java by method overloading and method
overriding.

If you overload a static method in Java, it is the example of
compile time polymorphism. Here, we will focus on runtime
polymorphism in java. Runtime polymorphism or Dynamic
Method Dispatch is a process in which a call to an overridden
method is resolved at runtime rather than compile-time. In
this process, an overridden method is called through the
reference variable of a superclass. The determination of the
method to be called is based on the object being referred to
by the reference variable.

Upcasting

If the reference variable of Parent class refers to the object of
Child class, it is known as upcasting. For example:

Reference ol .
variable of 4 Object of

parent class L Child class

PAGE 71

TECHNOXAMM

Guide for way to Learn

class A{}
class B extends A{}

A a=new B();//upcasting

For upcasting, we can use the reference variable of class
type or an interface type. For Example:

interface I{}

class A{}

class B extends A implements I{}

Here, the relationship of B class would be:
B IS-AA

BIS-Al

B IS-A Object

Since Object is the root class of all classes in Java, so we
can write B IS-A Object.

Example of Java Runtime Polymorphism

In this example, we are creating two classes Bike and
Splendor. Splendor class extends Bike class and overrides
its run() method. We are calling the run method by the
reference variable of Parent class. Since it refers to the
subclass object and subclass method overrides the Parent
class method, the subclass method is invoked at runtime.
Since method invocation is determined by the JVM not
compiler, it is known as runtime polymorphism.

class Bike{
void run(){System.out.printin("running");}

}

class Splendor extends Bike{
void run()

{System.out.printin("running safely with 60km");}
public static void main(String args[]){

PAGE 72

TECHNOXAMM

Guide for way to Learn

Bike b = new Splendor();//upcasting
b.run();

}
}

Output:
running safely with 60km.

Java Runtime Polymorphism Example: Shape

class Shape{

void draw(){System.out.printin("drawing...");}

}

class Rectangle extends Shape{

void draw(){System.out.printin("drawing rectangle...");}
}

class Circle extends Shape{

void draw(){System.out.printin("drawing circle...");}
}

class Triangle extends Shape{

void draw(){System.out.printin("drawing triangle...");}
}

class TestPolymorphism2{

public static void main(String args[]){

Shape s;

s=new Rectangle();

s.draw();

s=new Circle();

s.draw();

s=new Triangle();

s.draw();

}

}
Output:

drawing rectangle...
drawing circle...
drawing triangle...

PAGE 73

TECHNOXAMM

Guide for way to Learn

Abstraction in Java

Abstraction is a process of hiding the implementation details
and showing only functionality to the user.

Another way, it shows only essential things to the user and
hides the internal details, for example, sending SMS where
you type the text and send the message. You don't know the
internal processing about the message delivery.

Abstraction lets you focus on what the object does instead of
how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java
O Abstract class (0 to 100%)
O Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract
class. It can have abstract and non-abstract methods. It
needs to be extended and its method implemented. It cannot
be instantiated.

Points to Remember:

* An abstract class must be declared with an abstract
keyword.

It can have abstract and non-abstract methods.

It cannot be instantiated.

It can have constructors and static methods also.

It can have final methods which will force the subclass not
to change the body of the method.

PAGE 74

TECHNOXAMM

Guide for way to Learn

Abstract Method in Java
A method which is declared as abstract and does not have
implementation is known as an abstract method.

Example of abstract method
abstract void printStatus();//no method body and abstract

In this example, Bike is an abstract class that contains only
one abstract method run. Its implementation is provided by
the Honda class.

abstract class Bike{
abstract void run();
}
class Honda4 extends Bike{
void run(){System.out.printin("running safely");}
public static void main(String args[]{
Bike obj = new Honda4();
obj.run();
}
}

output:
running safely

Understanding the real scenario of Abstract class

In this example, Shape is the abstract class, and its
implementation is provided by the Rectangle and Circle
classes.

Mostly, we don't know about the implementation class (which
is hidden to the end user), and an object of the
implementation class is provided by the factory method.

A factory method is a method that returns the instance of the
class. We will learn about the factory method later.

In this example, if you create the instance of Rectangle class,
draw() method of Rectangle class will be invoked.

PAGE 75

TECHNOXAMM

Guide for way to Learn

abstract class Shape{

abstract void draw();

}

I/

In real scenario, implementation is provided by others i.e. un
known by end user

class Rectangle extends Shape{

void draw(){System.out.printin("drawing rectangle");}

}

class Circle1 extends Shape{

void draw(){System.out.printin("drawing circle");}

}

//In real scenario, method is called by programmer or user
class TestAbstraction1{

public static void main(String args[]){

Shape s=new Circle1();//

In a real scenario, object is provided through method, e.g., g
etShape() method

s.draw();

}
}

output
drawing circle

INTERFACE IN JAVA

An interface in Java is a blueprint of a class. It has static
constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction.
There can be only abstract methods in the Java interface,
not method body. It is used to achieve abstraction and
multiple inheritance in Java.

In other words, you can say that interfaces can have abstract
methods and variables. It cannot have a method body.

Java Interface also represents the IS-A relationship.

It cannot be instantiated just like the abstract class.

PAGE 76

TECHNOXAMM

Guide for way to Learn

Since Java 8, we can have default and static methods in an
interface.

Why use Java interface?

There are mainly three reasons to use interface. They are

given below.

O It is used to achieve abstraction.

O By interface, we can support the functionality of multiple
inheritance.

O It can be used to achieve loose coupling.

How to declare an interface?

An interface is declared by using the interface keyword. It
provides total abstraction; means all the methods in an
interface are declared with the empty body, and all the fields
are public, static and final by default. A class that implements
an interface must implement all the methods declared in the
interface.

Syntax:
interface <interface_name>{

/l declare constant fields
/I declare methods that abstract
// by default.

}

Java Interface Example

In this example, the Printable interface has only one method,
and its implementation is provided in the A6 class.

interface printable{
void print();
PAGE 77

TECHNOXAMM

Guide for way to Learn

class A6 implements printable{
public void print(){System.out.printin("Hello");}

public static void main(String args[]){
A6 obj = new A6();

obj.print();

}

}

output:
Hello

Java Interface Example: Drawable

In this example, the Drawable interface has only one
method. Its implementation is provided by Rectangle and
Circle classes. In a real scenario, an interface is defined by
someone else, but its implementation is provided by different
implementation providers. Moreover, it is used by someone
else. The implementation part is hidden by the user who
uses the interface.

//Interface declaration: by first user

interface Drawable{

void draw();

}

/lImplementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.printin("drawing rectangle");}
}

class Circle implements Drawable{

public void draw(){System.out.printin("drawing circle");}
}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]{

PAGE 78

TECHNOXAMM

Guide for way to Learn

Drawable d=new Circle();//

In real scenario, object is provided by method e.g. getDrawa
ble()

d.draw();

1
Output:

drawing circle

Exception Handling In Java

The exception handling in java is one of the powerful
mechanism to handle the runtime errors so that normal flow
of the application can be maintained.

What is exception

In java, exception is an event that disrupts the normal flow of
the program. It is an object which is thrown at runtime.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the
normal flow of the application. Exception normally disrupts
the normal flow of the application that is why we use
exception handling.

Types of Exception

There are mainly two types of exceptions: checked and
unchecked where error is considered as unchecked
exception. The sun microsystem says there are three types
of exceptions:

1. Checked Exception
2. Unchecked Exception
3. Error

PAGE 79

TECHNOXAMM

Guide for way to Learn

Difference between checked and unchecked exceptions

1) Checked Exception: The classes that extend Throwable
class except RuntimeException and Error are known as
checked exceptions e.g.IOException, SQLEXxception etc.
Checked exceptions are checked at compile-time.

2) Unchecked Exception: The classes that extend
RuntimeException are known as unchecked exceptions e.g.
ArithmeticException, NullPointerException,
ArraylndexOutOfBoundsException etc. Unchecked
exceptions are not checked at compile-time rather they are
checked at runtime.

3) Error: Error is irrecoverable e.g. OutOfMemoryError,
VirtualMachineError, AssertionErroretc.

Hierarchy of Java Exception classes

| Dbject
| Throwable
]
Exception Error
i |OException ii VirtualMachineError
I
— SQLException AssartionError
L T '
RuntimeException

ArithmeticException

NullPaintarException

NumberFormatException

PAGE 80

TECHNOXAMM

Guide for way to Learn

Checked and UnChecked Exceptions

ItvsccationTargetEsce otion
IMafarmzdua Escesten

Fereption which ate che e 3 s Fxrpaninns whese hasdling s NOT
Campile = ne called Che cued ve i ad during Cempile t me.
Exception + These sxceptions are 1andled at
¢ famethod virewe a checked ran-ume i =, by SN after they

raeption, Thaathe metand mucs aocuresd by iking The try and saleh
e tier hand e the exception orit blozk
mastepec v the Siception using
Marowes kaoviord
Fanmales: ¢ Fxamples

o 10Exewzion = No PoineBaeption

o SJLzxzeption = AT IngieC T Bound

o Nam&rersc—yrephing = WezalArgiemaatbye phine

o Cusshat *oundixeption = MesalState Sxception

Q

o

Java try block

Java try block is used to enclose the code that might throw
an exception. It must be used within the method. Java try
block must be followed by either catch or finally block.

Syntax of java try-catch
try{ //code that may throw exception

}catch(Exception_class_Name ref){}

Syntax of try-finally block
try{ //code that may throw exception

Minally{}

Java catch block
Java catch block is used to handle the Exception. It must be
used after the try block only. You can use multiple catch

PAGE 81

TECHNOXAMM

Guide for way to Learn

block with a single try.

Multithreading In Java

Multithreading in java is a process of executing multiple
threads simultaneously. Thread is basically a lightweight sub-
process, a smallest unit of processing. Multiprocessing and
multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because
threads share a common memory area. They don't allocate
separate memory area so saves memory, and context-
switching between the threads takes less time than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1)ltdoesn’tblocktheuserbecausethreadsareindependentandy
oucanperformmultiple operations at same time.

2) You can perform many operations together so it saves
time.

3) Threads are independent so it doesn't affect other threads
if exception occur in a single thread.

Life cycle of a Thread (Thread States)

A thread can be in one of the five states. According to sun,
there is only 4 states in thread life cycle in java new,
runnable, non-runnable and terminated. There is no running
state.

But for better understanding the threads, we are explaining it
in the 5 states.

PAGE 82

TECHNOXAMM

Guide for way to Learn

The life cycle of the thread in java is controlled by JVM. The
java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

New
start() 1 sleep done, 1/0)
complete lockavailakble,
SR resuine , nolily
f—
\\\~\\ Non-Runnzkble
(Blocked)
_
Running e = N
slecp, blockon 1/0, walt
el torlock, suspend, wait
rxite
v
lerminarerd

PAGE 83

TECHNOXAMM

Guide for way to Learn

How to create thread

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create
and perform operations on a thread.Thread class extends
Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()
oThread(String name) oThread(Runnable r)
oThread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the
thread.JVM calls the run() method on the thread.

3. public void sleep(long miliseconds): Causes the
currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to
die for the specified miliseconds.

PAGE 84

TECHNOXAMM

Guide for way to Learn

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of
the thread.

8. public String getName(): returns the name of the
thread.

9. public void setName(String name): changes the name
of the thread.

10. public Thread currentThread(): returns the reference of
currently executing thread.

11. public int getld(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the
thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing
thread object to temporarily pause and allow other
threads to execute.

15. public void suspend(): is used to suspend the
thread(depricated).

16. public void resume(): is used to resume the suspended
thread(depricated).

17. public void stop(): is used to stop the
thread(depricated).

18. public boolean isDaemon(): tests if the thread is a

daemon thread.
PAGE 85

TECHNOXAMM

Guide for way to Learn

19. public void setDaemon(boolean b): marks the thread as
daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isinterrupted(): tests if the thread has
been interrupted.

22. public static boolean interrupted(): tests if the current
thread has been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class
whose instances are intended to be executed by a thread.
Runnable interface have only one method named run().
public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly
created thread. It performs following tasks:

oA new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.
o When the thread gets a chance to execute, its target run()
method will run.

Java Thread Example by extending Thread class

class Multi extends Thread{
public void run(){ System.out.printin("thread is running..."); }

public static void main(String args[]{ Multi t1=new Multi();
t1.start();

1}
PAGE 86

TECHNOXAMM

Guide for way to Learn

class Multi3 implements Runnable{ public void run()
{ System.out.printin("thread is running..."); }

public static void main(String args[]){ Multi3 m1=new Multi3();
Thread t1 =new Thread(m1);
t1.start();

1

Output:thread is running...
Java Thread Example by implementing Runnable
interface

Output:thread is running...
Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a
number between 1 and 10. In most cases, thread schedular
schedules the threads according to their priority (known as
preemptive scheduling). But it is not guaranteed because it
depends on JVM specification that which scheduling it
chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY
2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The
value of MIN_PRIORITY is 1 and the value of
MAX_PRIORITY is 10.

PAGE 87

TECHNOXAMM

Guide for way to Learn

Example of priority of a Thread:
class TestMultiPriority1 extends Thread{ public void run(){

System.out.printin("running thread name
is:"+Thread.currentThread().getName());

System.out.printin("running thread priority
is:"+Thread.currentThread().getPriority()); }

public static void main(String args[]){

TestMultiPriority1 m1=new TestMultiPriority1();
TestMultiPriority1 m2=new TestMultiPriority1();
m1.setPriority(Thread.MIN_PRIORITY);
m2.setPriority(Thread.MAX_PRIORITY); m1.start();

m2.start(); }}
Output:

running thread name is:Thread-0 running thread priority is:10
running thread name is:Thread-1 running thread priority is:1

PAGE 88

